
Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 5, 2000 

I N J E C T I O N  C U R R E N T  AND T H E  F O R M A T I O N  OF B U B B L E S  IN S T R O N G ,  

V E R Y  N O N U N I F O R M  E L E C T R I C  F I E L D S  

S. M. Korobe in ikov  UDC 537.528 

The flow problem of a nonstationary current upon injection from a spherical electrode is solved. 
It is shown that the field distribution can have a maximum that is displaced in the direction 
from the electrode with the velocity of the injected-charge front. The formation of bubbles in 
pre-breakdown electric fields is analyzed and it is shown that the bubbles can form in dielectric 
liquids without ionization under the action of high voltage. 

In t roduc t ion .  An analysis of nonstationary injection currents is important not only for studying the 
structure of dielectric and semiconducting materials [1], but also for estimating the near-electrode electric 
fields, energy release, and pressure in the near-electrode region under the action of strong electric fields on 
the dielectrics. 

It is difficult to find a general solution of the problem, because the equations are nonlinear; therefore, 
the problem was solved earlier for partial cases of a nonstationary current limited by a volume charge injected 
from a flat [1] or spherical electrode [2] connected to a constant-voltage source. It was assumed that at the 
initial moment of time, the volume charge is photoinjection-induced at the electrode; otherwise the electrode 
is regarded as a reservoir electrode. These assumptions are not true in the case of a nonstationary current 
in the liquid under the action of a strong electric field. Many experiments (see, e.g., [3, 4]) showed that the 
dependence of the current on the voltage I (U) in nonpolar liquids of the type of hexane, tetramethylsilane, and 
cyclohexane for electrodes with a strongly nonuniform field has three characteristic sites; a linear dependence 
occurs at low voltage; when a certain voltage is reached, the current increases by two or three orders of 
magnitude; with the voltage further increased, the dependence I (U) takes the form I ..~ U 2. The first site 
corresponds to Ohm's law, the second site to the field emission of the charge carriers from the electrode, and 
the third site to the space-charge-limited current (SCLC). In nonpolar liquids, the transition to the SCLC 
regime occurs at the comparatively low local strength El <. 107 V/cm. We note that the specific feature of 
the SCLC regime is the weak dependence of the near-electrode strength on voltage. 

Korobeinikov et al. [5] studied the electric-field distributions in the near-electrode region in experiments 
with electro-optical registration of the pre-breakdown electric fields in nitrobenzene [5]. It was shown that 
after exceeding a certain threshold voltage, the spatial distribution of the electric field at a needle-shaped 
cathode has a maximum that is displaced from the electrode. The field strength remains constant irrespective 
of the voltage near the electrode. 

Model .  In modeling the above-described behavior of the current and the pre-breakdown field, we 
consider that as the voltage increases, the near-electrode strength first grows proportionally to the voltage 
(ohmic regime), then the SCLC regime occurs, and the near-electrode strength remains at the level of strength 
that corresponds to the transition to this regime. The transient regime is not considered. 

To determine the injected charge, it is necessary to solve a system of equations of electrodynamics with 
appropriate initial and boundary conditions. 
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The method of solving the equations tha t  was developed by us allows one to solve the problem for an 
arbitrary law of emission and for electrode systems having symmetry, i.e., for planes, cylinders, and spheres 
[6]. We restrict ourselves to the case of a spherical electrode with the simple law of emission, which is the 
most important for practice. In calculating the volume charges, the pressures, and the energy release, the 
contribution from the  first two sites of the volt-ampere characteristic can be ignored; therefore, we assume 
that  the emission begins when a certain threshold strength Ei is reached and that  the electrode becomes a 
reservoir electrode when this strength is exceeded. For the solution, information on the mobility of charge 
carriers # is needed; without taking into account its dependence on the time and the field strength,  we 
consider this mobility hydrodynamic [7]. 

We write the initial system of equations, which includes the continuity, Poisson, and total-current and 
total-voltage equations, in dimensionless form: 

r r21 Or'O (rr2E,p,) + -~OP' = O, rr 21 OHO (rr2E,) = p,, 
(1) 

o o  

OE' / 
Ot' + p'E' = J ' ,  E ' (r ' ,  t') dr' = U'(t ').  

1 
The transition from dimensionless to dimensional quantities is performed according to the following formulas: 

e0~U2# r0 2 ~0eU / 
J =  r----Eo z ' ,  t = t', r=r0r ' .  

Here J is the current density, U is the amplitude of the voltage pulse, r0 is the electrode radius, r is the 
dielectric permeability of the liquid, and ~0 is the dielectric constant. The hyperbolic system (1) is solved by 
the method of characteristics [8]. To do this, we substitute the second equation into the first one: 

OP I OP I E I pr2 
+ =0. 

The curves dr~(g ,~) /dg  = E', where t~ is the moment at which the characteristic leaves the electrode 
(injection of each port ion of the charge), are the characteristics of this equation. We can obtain 

d(E'r  n-) dP---~ (t', go) = _pr2, (t', tto) --- J 'r  r2 
dg dt' 

from the conditions on the curve or 

r'(t', t~) = 1 + 3(/(t') - l(go) - Q(go)(t' - tPo)) 1/3, (2) 

p'(r'(t ' ,  go)) = P~o/( 1 + ( t ' -  go)Jo), E'(r'(t ' ,  go)) = (E~ +.Q(t') - Q(go))/r '2 

after the integration. Here p~ is the density of the volume charge in the near-electrode region at the mo- 

mentgo, Q ( g ) = / J ' ( t ' ) d t ' , a n d l ( t ' ) = / Q ( t ' ) d t ' .  Substituting (2) into the total-voltage equation, after 

transformations we obtain 
t t 

Q(t')[E~ + (t ~ - Eo) dQ/dt~o] 
Q(t ' )  = u ' ( t ' )  - + (1 + dtlo . (3) 

0 

For quite short voltage pulses, Eq. (3) can be solved by the method of successive approximations. We use 
Q~o = U(t') - E~ as a zero approximation. The physical meaning of the zero approximation is clear - -  this is 
a charge of geometrical capacity. The physical meaning of Q1 and subsequent approximations is to increase 
the capacity by means of the volume emission charge. Choosing the criterion of convergence of the iterative 
process (Qn - Qn-1) /Qn < 5 (5 is the specified small number), we find the solution Q(tS). 

Figure 1 shows the field-strength distribution in the vicinity of the injecting spherical electrode at 
various moments of time. One can see that ,  with time, the minimum of the field strength in the volume- 
charge zone does not  remain at the electrode surfaces in the case of fiat electrodes [1]. For large moments 
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Fig. 1. Distribution of the electric=field 
strength upon injection of the charge carriers 
for t' = 0.3 (1), 0.6 (2), and 1 (3). 

of time, the volume charge is distributed over the gap so that the maximum of strength is restored at the 
electrode. 

One can estimate the heating of the liquid AT and the pressure drop A p  in the near-electrode region 
under pre-breakdown conditions from the dimensionless quantity Q(t ~) [5]: 

d A T  = e~ Q(t ')E~, A P  = ~oeE 2 -~ (Q - U').  (4) 
cpd 

Here cp and d are the thermal capacity and density of the liquid and E0 is the field strength in the absence 
of injection. 

Analysis  of E x p e r i m e n t a l  Data .  In analyzing the experimental data, one should take into con- 
sideration that it is not known with certainty if the bubbles are the consequence of ionization processes 
in the liquid, the transformation of a microbubble (micronucleus) to a "macrobubbles," or ionization-free 
pre-breakdown processes. 

The estimates (4) show that, for experimental conditions under which the pre-breakdown processes 
in nitrobenzene are studied for E0 ~ 1 MV/cm and E~ ~ 0.5 [5], the variation in temperature is negligible 
(AT < 1 K), and a negative pressure equal to about 1 MPa is the determining factor for the formation of 
bubbles. 

In the experiments on measurement of the dependence of the current on the voltage in using the 
point-plane electrode system with a point radius of 0.5-10, it was established that: 

short current pulses (shorter than 4 nsec) are generated at this strength; 
- -  the charge injected per pulse is determined only by the radius of curvature and does not depend 

neither on the voltage applied nor the pressure; 
- -  the period of time between the pulses decreases with increase in voltage; 
- -  each pulse produces a bubble at the point and the size and time of life of this bubble depend on 

the external pressure. 
These facts suggest that in nonpolar liquids, the strength at the onset of shock ionization amounts to 

several megavolts per centimeter, for example, 7 MV/cm for pentane and decane [9]. 
We consider the formation of bubbles in the near-electrode region owing to injection processes. It is 

impossible to use directly the calculation results obtained for the nonstationary injection current, because 
the flow conditions for the current in [9] are almost stationary. As the field strength shows, the flow regime 
for the current is close to the SCLC regime. 

In passing to the S C L C  regime, the charge density p is estimated to be p ~ eoeEl/rz, where El is 
the field strength near the micropoint of radius rl, at which the current passes to the SCLC regime. Upon 
emission of the charge carriers in the SCLC regime, the energy release is 

W ~ p # E 2 t  ~ eoe#E3t//rl. (5) 
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Here, because of the action of Coulomb forces on the volume charge, the pressure near the micropoint is 
smaller than atmospheric pressure Pa, i.e., 

P = Pa - Jr---Zl "" Pa - sosE~. (6) 
# 

It follows from the estimates (5) and (6) that overheating and cavitation should occur near the micropoint 
in the microregion for quite a high Et. This means that at a high local strength, microbubbles can also form 
during the action of a voltage pulse for almost any duration of this pulse. 

We analyze the results of [9] as applied to the bubble model [10] with allowance for the emission of 
charge carriers. We consider that at a field strength of about 7 MV/cm, the electron emission varies from the 
injection-limited current (ILC) to the SCLC regime. For a point of radius 1/~m, the volume-charge density is 
approximately 0.01 C/cm 3. If the mobility of charge carriers is 10-3-10 -4 cm2/(V �9 the current density 
amounts to 7-70 A/cm 2, the negative pressure is 7 MPa in the stationary regime, and the energy release 
reaches 1 kJ/cm 3 for 20-200 #sec. The heat diffusion from the micropoint region decreases the temperature 
in the near-electrode region but does not affect the level of negative pressure. Therefore, a metatstable region 
should appear near the micropoint mainly owing to the negative pressure; this leads to the generation of a 
bubble as a result of homogeneous nucleation. Overheating of the liquid becomes the determining factor in 
the case of high-mobility charge carriers, and tension in the case of low-mobility charge carriers. 

The rate of bubble growth is determined by the degree of overheating. The velocity of sound and 
the characteristic velocity of Rayleigh pulsations are the upper and lower estimates of the rate, respectively. 
The time of bubble growth up to a radius of 1 #m is estimated to be 1-10 nsec. The volume charge in the 
near-electrode zone is ejected by the growing bubble; this is manifested in the external electric circuit by 
the current pulse whose duration is equal to the time of bubble growth. The bubble size is determined by 
the radius of rounding of the point; therefore, the charge ejected by the bubble from the strong-field zone is 
determined by the radius of the point as well. 

Upon homogeneous nucleation, the frequency S of bubble formation per unit volume is determined by 
the depth of penetration into the metastable region [11] and can be written in the form 

\Trm/ �9 ( -16m'~ S : [Nexp ( -  ~fT)(  2~r )1'21 exp \ 3 k T ( P s ( T ) -  Pa + eoeE~) 2)" (7) 

Here N is the molecular concentration, m is the molecular mass, A is the heat of vaporization, k is the 
Boltzmann constant, T is the temperature, ~r is the surface-tension coefficient, and Ps(T)  is the pressure of 
the saturated vapors. An analysis of the dependence (7) shows that the expression in square brackets is a large 
quantity (1030 cm3/sec) that depends weakly on the depth of penetration into the metastable region. The 
decisive role is played by the second cofactor equal to zero on the line of vapor-liquid equilibrium; this cofactor 
increases rapidly with distance from the line of equilibrium, reaching unity at the critical point. In turn, the 
possibility of deep penetration into the metastable region depends strongly on the local strength. This follows 
from the following considerations. If the negative pressure and overheating occur before the transition of the 
ILC regime to the SCLC regime, the energy release will depend on the voltage exponentially. In the SCLC 
regime, the energy release has a cubic dependence on the voltage. The dependence of the frequency of bubble 
formation on the voltage should have a threshold character in the ILC and SCLC regimes. Therefore, the 
formation of bubbles should also have a threshold character, depending on the voltage. Here the voltage 
threshold does not almost depend on the pressure, because the energy release and the negative pressure 
are determined by emission processes, and even weak changes in the local strength compensate for any real 
changes in the external pressure. The size of the formed bubble depends on the external pressure. The 
release of overheating into the bubble gives rise to cooling of the near-electrode region. The bubble is rejected 
from it owing to the electrohydrodynamic currents and the dielectrophoretic force, is cooled, and collapses 
according to the known model of Rayleigh pulsations. After that, the process is repeated: the energy release, 
the negative pressure, the formation of a bubble, etc. The period depends on voltage: the higher the voltage, 
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the shorter the period of pulse repetition. Here, in practice, the charge stored in the near-electrode region in 
the SCLC regime for the period does not depend on the voltage applied. 

This mechanism also explains the occurrence of bubbles near the micropoint at the surface of flat 
electrodes in strong electric fields [11]. As a rule, the field increases by a factor of 30-200 near the micropoint 
[12]. This means that an emission intensity of 10 MV/cm will be reached already at an average strength 
of 100 kV/cm, i.e., under the usual conditions of breakdown experiments in liquids. In turn, this implies 
that in almost all the "breakdown" experiments, the ionization-free formation of microbubbles could occur 
immediately during the action of the voltage pulse. 

Conc lus ion .  Thus, an analysis of injection currents and the related energy release and negative 
pressure allows one to explain known experiments on detection of pre-breakdown microbubbles without using 
the hypothesis of shock ionization in the liquid phase at the pre-breakdown stage. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-02- 
17903) and the Ministry of Education of the Russian Federation (Grant No. 97-5.3-114). 
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